Mathematically Important Pedagogical Opportunities (MIPO)

Keith Leatham (Brigham Young University) Shari Stockero (Michigan Technological University) Blake Peterson (Brigham Young University) Laura Van Zoest (Western Michigan University)

Related Ideas in the Literature

- "critical moments in the classroom when students created a moment of choice or opportunity" (Jaworski, 1994, p. 527)
- "significant mathematical instances" (Davies & Walker, 2005, p. 275)
- "potentially powerful learning opportunities" (Davis, 1997, p. 360)
- "an issue that the teacher judges to be a candidate for classroom discussion" (Schoenfeld, 2008, p. 65)
- "novel student idea[s] that prompt teachers to reflect on and rethink their instruction" (Schifter, 1996, p. 130)

Defining MIPOs

Mathematically Important Pedagogical Opportunities (MIPO) are at the intersection of three critical characteristics

- important mathematics
- student thinking
- pedagogical opportunity

Mathematically Important

- Grand Scheme + Classroom Context
- Mathematical Goal

Student Thinking

- Observable evidence of student thinking: instances where a student's actions provide sufficient evidence to make reasonable inferences about their thinking.
 - verbal utterances, board-work, or gestures
 - observable in whole-class, small-group, or individual written work.
 - observable vs. observed
- Distinction between evidence that students are thinking and evidence of what students might be thinking.

Pedagogical Opportunity

- Observable student actions that provide evidence that students are engaged with or thinking about the content of an instructional goal – provides an opening for working towards that goal.
- Can be cultivated by the teacher, but cannot be created independently of the students.

MIPOs

- Occur at the intersection of *important mathematics, student thinking,* and *pedagogical opportunities*.
- Observable evidence of student thinking related to mathematical goals for a given classroom provides pedagogical openings for working towards those goals.

Relationship among Important Mathematics, Pedagogical Opportunities and Student Thinking

5th grade - finding output values for the rule 3x + 1 given different input values. Students are asked for the output when $\frac{1}{4}$ was the input.

- 1. Soochow: One and three fourths.
- 2. T: How would you explain it please?
- 3. Soochow: Because one-fourth times three is three-fourths and then you just add o- add a one.
- 4. T: Okay, so first you times by three and then you add one.
- 5. T: Who can explain why one fourth times three is three fourths? Sun Wu?
- 6. Sun Wu: One fourth, like one fourth of a pie and then somebody brings two more and one times three is three—three pieces of pie that came out of four pieces of pie?

5th grade - finding output values for the rule 3x + 1 given different input values. Students are asked for the output when $\frac{1}{4}$ was the input.

- 1. Soochow: One and three fourths.
- 2. T: How would you explain it please?
- 3. Soochow: Because one-fourth times three is three-fourths and then you just add o- add a one.
- 4. T: Okay, so first you times by three and then you add one.
- 5. T: Who can explain why one fourth times three is three fourths? Sun Wu?
- 6. Sun Wu: One fourth, like one fourth of a pie and then somebody brings two more and one times three is three—three pieces of pie that came out of four pieces of pie?

5th grade - finding output values for the rule 3x + 1 given different input values. Students are asked for the output when $\frac{1}{4}$ was the input.

- 1. Soochow: One and three fourths.
- 2. T: How would you explain it please?
- 3. Soochow: Because one-fourth times three is three-fourths and then you just add o- add a one.
- 4. T: Okay, so first you times by three and then you add one.
- 5. T: Who can explain why one fourth times three is three fourths? Sun Wu?
- 6. Sun Wu: One fourth, like one fourth of a pie and then somebody brings two more and one times three is three—three pieces of pie that came out of four pieces of pie?

Why MIPOs

- Provides a
 - useful lens for analyzing the complexity of classroom mathematics discourse
 - vocabulary for discussing instances of student thinking that are of mathematical and pedagogical importance
- Tool for analyzing practice that
 - makes more tangible the often abstract but fundamental goal of building on student thinking
 - focuses attention on high leverage instances of student thinking